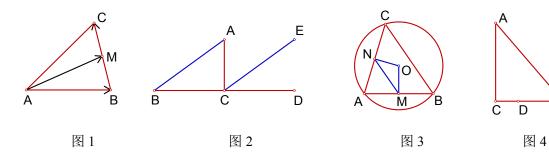
2011 年上海市初中毕业统一学业考试数学卷

(满分 150 分 考试时间 100 分钟)

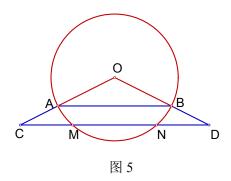

— 、	选择题	(本大题共6题,	每题4分.	共24分)
•	从以上代达		₩KΔ T /J)	

1. 下列分数中,能化为有限小数的是().

	(A) $\frac{1}{3}$;	(B) $\frac{1}{5}$;	(C) $\frac{1}{7}$;	(D) $\frac{1}{9}$.					
	2. 如果 $a > b$, $c < 0$, 那么下列不等式成立的是 ().								
	(A) $a+c>b+c$;	(B) $c - a > c - b$;	(C) $ac > bc$;	(D) $\frac{a}{c} > \frac{b}{c}$.					
	3. 下列二次根式中,								
	(A) $\sqrt{\frac{1}{5}}$;	(B) $\sqrt{0.5}$;	(C) $\sqrt{5}$;	(D) $\sqrt{50}$.					
	4. 抛物线 $y = -(x+2)^2 - 3$ 的顶点坐标是 ().								
	(A) $(2, -3);$	(B) $(-2, 3);$	(C) (2, 3);	(D) $(-2, -3)$.					
	5. 下列命题中, 真命题是 ().								
	(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等;								
	(C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.								
	6. 矩形 <i>ABCD</i> 中, A	$B=8, BC=3\sqrt{5} \ ,$	点 <i>P</i> 在边 <i>AB</i> 上,且	l <i>BP</i> =3 <i>AP</i> ,如果圆 <i>P</i> 是					
以点 P 为圆心, PD 为半径的圆,那么下列判断正确的是().									
	(A) 点 $B \setminus C$ 均在圆 P 外; (B) 点 B 在圆 P 外、点 C 在圆 P 内;								
	(C) 点 B 在圆 P 内、点 C 在圆 P 外; (D) 点 B 、 C 均在圆 P 内.								
=,	填空题(本大题共 12	题,每题4分,共4	8分)						
	7. 计算: $a^2 \cdot a^3 = $	·							
	8. 因式分解: $x^2 - 9y^2 = $								
	9. 如果关于 x 的方程 $x^2 - 2x + m = 0$ (m 为常数)有两个相等实数根,那么 $m =$								
	10. 函数 $y = \sqrt{3-x}$ 的定义域是								

11.	如果反比例函	i数 $y = \frac{k}{x}$	(<i>k</i> 是常数,	$k\neq 0$)	的图像经过点(-1,	2),	那么这个函数
的解析式	是						

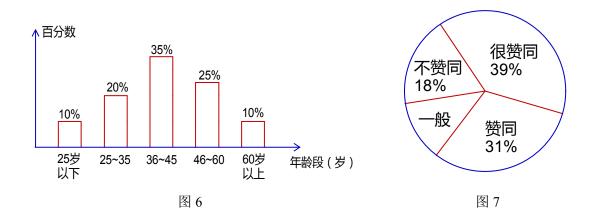
- 12. 一次函数 y=3x-2 的函数值 y 随自变量 x 值的增大而______ (填"增大"或"减小").
- 13. 有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是
- 14. 某小区 2010 年屋顶绿化面积为 2000 平方米, 计划 2012 年屋顶绿化面积要达到 2880 平方米. 如果每年屋顶绿化面积的增长率相同,那么这个增长率是 .
- 15. 如图 1,AM 是 $\triangle ABC$ 的中线,设向量 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{BC} = \overrightarrow{b}$,那么向量 $\overrightarrow{AM} =$ ______(结果用 \overrightarrow{a} 、 \overrightarrow{b} 表示).
- 16. 如图 2, 点 B、C、D 在同一条直线上,CE//AB, $\angle ACB$ =90°,如果 $\angle ECD$ =36°,那么 $\angle A$ =
- 17. 如图 3, AB、AC 都是圆 O 的弦, $OM \perp AB$, $ON \perp AC$, 垂足分别为 M、N, 如果 MN=3, 那么 BC=______.
- 18. Rt $\triangle ABC$ 中,已知 $\angle C$ =90°, $\angle B$ =50°,点 D 在边 BC 上,BD=2CD (图 4). 把 $\triangle ABC$ 绕着点 D 逆时针旋转 m (0<m<180) 度后,如果点 B 恰好落在初始 Rt $\triangle ABC$ 的边上,那么 m=



三、解答题(本大题共7题,满分78分)

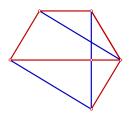
19. (本题满分 10 分) 计算:
$$(-3)^0 - \sqrt{27} + \left|1 - \sqrt{2}\right| + \frac{1}{\sqrt{3} + \sqrt{2}}$$
.

20. (本题满分 10 分) 解方程组: $\begin{cases} x - y = 2, \\ x^2 - 2xy - 3y^2 = 0. \end{cases}$


- 21. (本题满分 10 分, 第 (1) 小题满分 4 分, 第 (2) 小题满分 6 分) 如图 5, 点 *C*、*D* 分别在扇形 *AOB* 的半径 *OA*、*OB* 的延长线上,且 *OA*=3, *AC*=2, *CD* 平行于 *AB*,并与弧 *AB* 相交于点 *M*、*N*.
 - (1) 求线段 OD 的长;
 - (2) 若 $\tan \angle C = \frac{1}{2}$,求弦 MN 的长.

22. (本题满分 10 分, 第 (1)、(2) 小题满分各 2 分, 第 (3)、(4) 小题满分各 3 分)

据报载,在"百万家庭低碳行,垃圾分类要先行"活动中,某地区对随机抽取的 1000 名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图 (图 6)、扇形图(图 7).


- (1) 图 7 中所缺少的百分数是_____;
- (2) 这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是 (填写年龄段);
- (3) 这次随机调查中,年龄段是"25岁以下"的公民中"不赞成"的有5名,它占"25岁以下"人数的百分数是______;
- (4) 如果把所持态度中的"很赞同"和"赞同"统称为"支持",那么这次被调查公民中"支持"的人有_____名.

23. (本题满分12分,每小题满分各6分)

如图,在梯形 ABCD 中, AD//BC, AB=DC, 过点 D 作 $DE\perp BC$, 垂足为 E, 并延长 DE 至 F, 使 EF=DE. 联结 BF、CD、AC.

- (1) 求证: 四边形 ABFC 是平行四边形;
- (2) 如果 *DE*²=*BE CE*, 求证四边形 *ABFC* 是矩形.

24. (本题满分12分,每小题满分各4分)

已知平面直角坐标系 xOy (如图 1),一次函数 $y=\frac{3}{4}x+3$ 的图像与 y 轴交于点 A,点 M 在正比例函数 $y=\frac{3}{2}x$ 的图像上,且 MO=MA. 二次函数

 $y=x^2+bx+c$ 的图像经过点 $A \setminus M$.

- (1) 求线段 AM 的长;
- (2) 求这个二次函数的解析式;
- (3) 如果点B在y轴上,且位于点A下方,点C在上述二次函数的图像上,点D在一次函数 $y = \frac{3}{4}x + 3$ 的图

像上,且四边形 ABCD 是菱形,求点 C 的坐标.

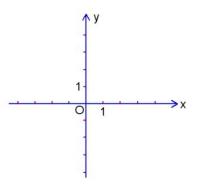
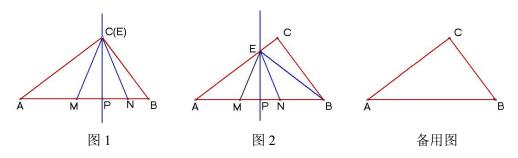



图 1

25. (本题满分 14 分, 第 (1) 小题满分 4 分, 第 (2)、(3) 小题满分各 5 分)

在 Rt $\triangle ABC$ 中, $\angle ACB$ =90°,BC=30,AB=50.点 P 是 AB 边上任意一点,直线 PE $\bot AB$,与边 AC 或 BC 相交于 E.点 M 在线段 AP 上,点 N 在线段 BP 上,EM=EN, $\sin \angle EMP$ = $\frac{12}{13}$.

- (1) 如图 1, 当点 E 与点 C 重合时, 求 CM 的长;
- (2)如图 2,当点 E 在边 AC 上时,点 E 不与点 A、C 重合,设 AP=x,BN=y,求 y 关于 x 的函数关系式,并写出函数的定义域;
- (3) 若 $\triangle AME$ \hookrightarrow $\triangle ENB$ ($\triangle AME$ 的顶点 A、M、E 分别与 $\triangle ENB$ 的顶点 E、N、B 对应),求 AP 的长.

2011年上海市初中毕业统一学业数学卷答案及评分参考

(满分 150 分, 考试时间 100 分钟)

一、选择题(本大题共6题,每题4分,满分24分)

 题号
 1
 2
 3
 4
 5
 6

 答案
 B
 A
 C
 D
 D
 C

 二、填空题 (本大题共 12 题,每题 4 分,满分 48 分)

10 14 15 题号 7 8 12 13 18 $20\% \quad a + \frac{1}{2}b$ 答案 增大 54 80 或 120 y=-(x+3y)(x-3y)1 *x*≤3

三、解答题 (本题共30分,每小题5分)

19. (本题满分 10 分)

$$[\text{M}] (-3)^{0} - \sqrt{27} + |1 - \sqrt{2}| + \frac{1}{\sqrt{3} + \sqrt{2}}$$
$$= 1 - 3\sqrt{3} + \sqrt{2} - 1 + \sqrt{3} - \sqrt{2}$$

6

$$=-2\sqrt{3}$$
.

20. (本题满分 10 分)

[解] (x,y)=(1,-1)或(3,1)。

- 21. (本题满分 10 分, 第(1)小题满分 4 分, 第(2)小题满分 6 分)
 - [解] (1) OD=5 (根据平行可证得△COD 是等腰三角形,OD=OC=5),
 - (2) 过点 O 作 $OE \perp MN$,垂足为点 E,并连结 OM,根据 $tanC = \frac{1}{2}$ 与 OC = 5,

 \Rightarrow $OE=\sqrt{5}$,在 Rt \triangle OEM中,利用勾股定理,得 ME=2,即 AM=2ME=4。

22. (本题满分 10 分, 第(1)、(2)小题满分各 2 分, 第(3)、(4)小题满分各 3 分)

[解] (1) 12%, (2) 36~45, (3) 5%, (4) 700 人。

- 23. (本题满分12分,每小题满分各6分)
- [解] (1) 等腰梯形 ABCD 中,AB=DC, $\angle B=\angle DCB$, \therefore $\triangle DFC$ 是等腰三角形, \therefore $\angle DCB=\angle FCE$,

DC=CF, 所以 $\angle B=\angle FCE$, AB=CF, 易证四边形 ABFC 是平行四边形。

- (2) 提示:射影定理的逆定理不能直接在中考中使用,必须通过相似三角形来证明,内角为90°。
- 24. (本题满分12分,每小题满分各4分)
 - [解] (1) 根据两点之间距离公式,设 $M(a, \frac{3}{2}a)$,由|MO|=|MA|,解得:a=1,则 $M(1, \frac{3}{2})$,即 $AM=\frac{\sqrt{13}}{2}$ 。
 - (2) \therefore A(0,3), \therefore c=3, 将点 M代入 $y=x^2+bx+3$, 解得: $b=-\frac{5}{2}$, 即: $y=x^2-\frac{5}{2}x+3$ 。
 - (3) C(2, 2) (根据以 AC、BD 为对角线的菱形)。注意: A、B、C、D 是按顺序的。

[解]
$$\mathcal{B}(0, m) (m < 3)$$
, $C(n, n^2 - \frac{5}{2}n + 3)$, $D(n, \frac{3}{4}n + 3)$,

$$|AB|=3-m$$
, $|DC|=y_D-y_C=\frac{3}{4}n+3-(n^2-\frac{5}{2}n+3)=\frac{13}{4}n-n^2$,

$$|AD| = \sqrt{(n-0)^2 - (\frac{3}{4}n + 3 - 3)^2} = \frac{5}{4}n,$$

$$|AB|=|DC| \Rightarrow 3-m=\frac{13}{4}n-n^2...e_T, |AB|=|AD| \Rightarrow 3-m=\frac{5}{4}n...e_5.$$

解**e**r, **&**c, 得 n_1 =0(舍去), 或者 n_2 =2, 将 n=2 代入 $C(n, n^2 - \frac{5}{2}n$ +3), 得 C(2, 2)。

25. (本题满分 14 分, 第(1)小题满分 4 分, 第(2)、(3)小题满分各 5 分)

[解] (1) 由
$$AE$$
=40, BC =30, AB =50, $\Rightarrow CP$ =24,又 $\sin \angle EMP$ = $\frac{12}{13}$ $\Rightarrow CM$ =26。

(2) 在 Rt△AEP 與 Rt△ABC 中, ∵ ∠EAP=∠BAC, ∴ Rt△AEP ~ Rt△ABC,

$$\therefore \frac{EP}{AP} = \frac{BC}{AC}, \quad \mathbb{P} \frac{EP}{x} = \frac{30}{40}, \quad \therefore EP = \frac{3}{4}x,$$

(3) er 當 E 在線段 AC 上時,由(2)知,
$$\frac{EM}{EP} = \frac{13}{12}$$
,即 $\frac{EM}{\frac{3}{4}x} = \frac{13}{12}$, $\Rightarrow EM = \frac{13}{16}x = EN$,

$$X AM = AP - MP = x - \frac{5}{16} x = \frac{11}{16} x$$

由題設
$$\triangle AME \sim \triangle ENB$$
, ∴ $\frac{AM}{EN} = \frac{ME}{NB}$, $\Rightarrow \frac{\frac{11}{16}x}{\frac{13}{16}x} = \frac{\frac{13}{16}x}{50 - \frac{21}{16}x}$,解得 $x=22=AP$ 。

& 當 E 在線段 BC 上時,由題設 $\triangle AME \sim \triangle ENB$, $\therefore \angle AEM = \angle EBN$ 。 由外角定理, $\angle AEC = \angle EAB + \angle EBN = \angle EAB + \angle AEM = \angle EMP$,

$$\therefore Rt \triangle ACE \sim Rt \triangle EPM, \Rightarrow \frac{AC}{CE} = \frac{EP}{PM}, \quad \mathbb{E} \frac{40}{CE} = \frac{\frac{3}{4}x}{\frac{5}{16}x}, \quad \Rightarrow CE = \frac{50}{3} \dots \text{er}$$

設 *AP=z*,∴ *PB*=50-*z*,

∴
$$CE = BC - BE = 30 - \frac{5}{3}(50 - z)$$
...&∴

由*e*r, *&*s, 解
$$\frac{50}{3}$$
=30- $\frac{5}{3}$ (50-z), 得 z=42=AP。